Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(41): e2220403120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37796985

RESUMO

As SARS-CoV-2 variants of concern (VoCs) that evade immunity continue to emerge, next-generation adaptable COVID-19 vaccines which protect the respiratory tract and provide broader, more effective, and durable protection are urgently needed. Here, we have developed one such approach, a highly efficacious, intranasally delivered, trivalent measles-mumps-SARS-CoV-2 spike (S) protein (MMS) vaccine candidate that induces robust systemic and mucosal immunity with broad protection. This vaccine candidate is based on three components of the MMR vaccine, a measles virus Edmonston and the two mumps virus strains [Jeryl Lynn 1 (JL1) and JL2] that are known to provide safe, effective, and long-lasting protective immunity. The six proline-stabilized prefusion S protein (preS-6P) genes for ancestral SARS-CoV-2 WA1 and two important SARS-CoV-2 VoCs (Delta and Omicron BA.1) were each inserted into one of these three viruses which were then combined into a trivalent "MMS" candidate vaccine. Intranasal immunization of MMS in IFNAR1-/- mice induced a strong SARS-CoV-2-specific serum IgG response, cross-variant neutralizing antibodies, mucosal IgA, and systemic and tissue-resident T cells. Immunization of golden Syrian hamsters with MMS vaccine induced similarly high levels of antibodies that efficiently neutralized SARS-CoV-2 VoCs and provided broad and complete protection against challenge with any of these VoCs. This MMS vaccine is an efficacious, broadly protective next-generation COVID-19 vaccine candidate, which is readily adaptable to new variants, built on a platform with a 50-y safety record that also protects against measles and mumps.


Assuntos
COVID-19 , Sarampo , Caxumba , Cricetinae , Animais , Humanos , Camundongos , SARS-CoV-2/genética , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Vacina contra Sarampo-Caxumba-Rubéola , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , Imunoglobulina G , Mesocricetus , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética
2.
J Med Virol ; 95(4): e28687, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36941778

RESUMO

Measles virus (MeV) has been an excellent vector platform for delivering vaccines against many pathogens because of its high safety and efficacy, and induction of long-lived immunity. Early in the COVID-19 pandemic, a recombinant MeV (rMeV) expressing the prefusion full-length spike protein stabilized by two prolines (TMV-083) was developed and tested in phase 1 and 1/2 clinical trials but was discontinued because of insufficient immunogenicity and a low seroconversion rate in adults. Here, we compared the immunogenicity of rMeV expressing a soluble prefusion spike (preS) protein stabilized by two prolines (rMeV-preS-2P) with a rMeV expressing a soluble preS protein stabilized by six prolines (rMeV-preS-6P). We found that rMeV-preS-6P expressed approximately five times more preS than rMeV-preS-2P in cell culture. Importantly, rMeV-preS-6P induced 30-60 and six times more serum immunoglobulin G and neutralizing antibody than rMeV-preS-2P, respectively, in IFNAR-/- mice. IFNAR-/- mice immunized with rMeV-preS-6P were completely protected from challenge with a mouse-adapted SARS-CoV-2, whereas those immunized with rMeV-preS-2P were partially protected. In addition, hamsters immunized with rMeV-preS-6P were completely protected from the challenge with a Delta variant of SARS-CoV-2. Our results demonstrate that rMeV-preS-6P is significantly more efficacious than rMeV-preS-2P, highlighting the value of using preS-6P as the antigen for developing vaccines against SARS-CoV-2.


Assuntos
COVID-19 , Cricetinae , Animais , Humanos , Camundongos , COVID-19/prevenção & controle , SARS-CoV-2/genética , Vacinas contra COVID-19 , Pandemias , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes , Vírus do Sarampo/genética , Prolina , Anticorpos Antivirais
3.
J Immunol ; 210(9): 1257-1271, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36881867

RESUMO

Vaccines against SARS-CoV-2 that induce mucosal immunity capable of preventing infection and disease remain urgently needed. In this study, we demonstrate the efficacy of Bordetella colonization factor A (BcfA), a novel bacteria-derived protein adjuvant, in SARS-CoV-2 spike-based prime-pull immunizations. We show that i.m. priming of mice with an aluminum hydroxide- and BcfA-adjuvanted spike subunit vaccine, followed by a BcfA-adjuvanted mucosal booster, generated Th17-polarized CD4+ tissue-resident memory T cells and neutralizing Abs. Immunization with this heterologous vaccine prevented weight loss following challenge with mouse-adapted SARS-CoV-2 (MA10) and reduced viral replication in the respiratory tract. Histopathology showed a strong leukocyte and polymorphonuclear cell infiltrate without epithelial damage in mice immunized with BcfA-containing vaccines. Importantly, neutralizing Abs and tissue-resident memory T cells were maintained until 3 mo postbooster. Viral load in the nose of mice challenged with the MA10 virus at this time point was significantly reduced compared with naive challenged mice and mice immunized with an aluminum hydroxide-adjuvanted vaccine. We show that vaccines adjuvanted with alum and BcfA, delivered through a heterologous prime-pull regimen, provide sustained protection against SARS-CoV-2 infection.


Assuntos
Hidróxido de Alumínio , COVID-19 , Humanos , Animais , Camundongos , Imunidade nas Mucosas , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Imunização , Adjuvantes Imunológicos , Anticorpos Antivirais , Anticorpos Neutralizantes
4.
EMBO Rep ; 24(4): e56660, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36880581

RESUMO

Interferon-induced transmembrane protein 3 (IFITM3) is an antiviral protein that alters cell membranes to block fusion of viruses. Conflicting reports identified opposing effects of IFITM3 on SARS-CoV-2 infection of cells, and its impact on viral pathogenesis in vivo remains unclear. Here, we show that IFITM3 knockout (KO) mice infected with SARS-CoV-2 experience extreme weight loss and lethality compared to mild infection in wild-type (WT) mice. KO mice have higher lung viral titers and increases in inflammatory cytokine levels, immune cell infiltration, and histopathology. Mechanistically, we observe disseminated viral antigen staining throughout the lung and pulmonary vasculature in KO mice, as well as increased heart infection, indicating that IFITM3 constrains dissemination of SARS-CoV-2. Global transcriptomic analysis of infected lungs shows upregulation of gene signatures associated with interferons, inflammation, and angiogenesis in KO versus WT animals, highlighting changes in lung gene expression programs that precede severe lung pathology and fatality. Our results establish IFITM3 KO mice as a new animal model for studying severe SARS-CoV-2 infection and overall demonstrate that IFITM3 is protective in SARS-CoV-2 infections in vivo.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , COVID-19/genética , Interferons/genética , Pulmão , Camundongos Knockout
5.
Proc Natl Acad Sci U S A ; 119(42): e2123338119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36240321

RESUMO

5-methylcytosine (m5C) is one of the most prevalent modifications of RNA, playing important roles in RNA metabolism, nuclear export, and translation. However, the potential role of RNA m5C methylation in innate immunity remains elusive. Here, we show that depletion of NSUN2, an m5C methyltransferase, significantly inhibits the replication and gene expression of a wide range of RNA and DNA viruses. Notably, we found that this antiviral effect is largely driven by an enhanced type I interferon (IFN) response. The antiviral signaling pathway is dependent on the cytosolic RNA sensor RIG-I but not MDA5. Transcriptome-wide mapping of m5C following NSUN2 depletion in human A549 cells revealed a marked reduction in the m5C methylation of several abundant noncoding RNAs (ncRNAs). However, m5C methylation of viral RNA was not noticeably altered by NSUN2 depletion. In NSUN2-depleted cells, the host RNA polymerase (Pol) III transcribed ncRNAs, in particular RPPH1 and 7SL RNAs, were substantially up-regulated, leading to an increase of unshielded 7SL RNA in cytoplasm, which served as a direct ligand for the RIG-I-mediated IFN response. In NSUN2-depleted cells, inhibition of Pol III transcription or silencing of RPPH1 and 7SL RNA dampened IFN signaling, partially rescuing viral replication and gene expression. Finally, depletion of NSUN2 in an ex vivo human lung model and a mouse model inhibits viral replication and reduces pathogenesis, which is accompanied by enhanced type I IFN responses. Collectively, our data demonstrate that RNA m5C methylation controls antiviral innate immunity through modulating the m5C methylome of ncRNAs and their expression.


Assuntos
Interferon Tipo I , Viroses , 5-Metilcitosina/metabolismo , Animais , Antivirais , Proteína DEAD-box 58/metabolismo , Humanos , Imunidade Inata/genética , Interferon Tipo I/genética , Interferons , Ligantes , Camundongos , RNA Polimerase III , Replicação Viral/genética
6.
Proc Natl Acad Sci U S A ; 119(35): e2110105119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994646

RESUMO

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the main target for neutralizing antibodies (NAbs). The S protein trimer is anchored in the virion membrane in its prefusion (preS) but metastable form. The preS protein has been stabilized by introducing two or six proline substitutions, to generate stabilized, soluble 2P or HexaPro (6P) preS proteins. Currently, it is not known which form is the most immunogenic. Here, we generated recombinant vesicular stomatitis virus (rVSV) expressing preS-2P, preS-HexaPro, and native full-length S, and compared their immunogenicity in mice and hamsters. The rVSV-preS-HexaPro produced and secreted significantly more preS protein compared to rVSV-preS-2P. Importantly, rVSV-preS-HexaPro triggered significantly more preS-specific serum IgG antibody than rVSV-preS-2P in both mice and hamsters. Antibodies induced by preS-HexaPro neutralized the B.1.1.7, B.1.351, P.1, B.1.427, and B.1.617.2 variants approximately two to four times better than those induced by preS-2P. Furthermore, preS-HexaPro induced a more robust Th1-biased cellular immune response than preS-2P. A single dose (104 pfu) immunization with rVSV-preS-HexaPro and rVSV-preS-2P provided complete protection against challenge with mouse-adapted SARS-CoV-2 and B.1.617.2 variant, whereas rVSV-S only conferred partial protection. When the immunization dose was lowered to 103 pfu, rVSV-preS-HexaPro induced two- to sixfold higher antibody responses than rVSV-preS-2P in hamsters. In addition, rVSV-preS-HexaPro conferred 70% protection against lung infection whereas only 30% protection was observed in the rVSV-preS-2P. Collectively, our data demonstrate that both preS-2P and preS-HexaPro are highly efficacious but preS-HexaPro is more immunogenic and protective, highlighting the advantages of using preS-HexaPro in the next generation of SARS-CoV-2 vaccines.


Assuntos
Prolina , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Desenvolvimento de Vacinas , Estomatite Vesicular , Vacinas Virais , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/genética , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Cricetinae , Humanos , Camundongos , Prolina/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Estomatite Vesicular/imunologia , Estomatite Vesicular/prevenção & controle , Estomatite Vesicular/virologia , Vesiculovirus/imunologia , Proteínas Virais/imunologia , Vacinas Virais/imunologia
7.
Proc Natl Acad Sci U S A ; 119(33): e2201616119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35895717

RESUMO

With the rapid increase in SARS-CoV-2 cases in children, a safe and effective vaccine for this population is urgently needed. The MMR (measles/mumps/rubella) vaccine has been one of the safest and most effective human vaccines used in infants and children since the 1960s. Here, we developed live attenuated recombinant mumps virus (rMuV)-based SARS-CoV-2 vaccine candidates using the MuV Jeryl Lynn (JL2) vaccine strain backbone. The soluble prefusion SARS-CoV-2 spike protein (preS) gene, stablized by two prolines (preS-2P) or six prolines (preS-6P), was inserted into the MuV genome at the P-M or F-SH gene junctions in the MuV genome. preS-6P was more efficiently expressed than preS-2P, and preS-6P expression from the P-M gene junction was more efficient than from the F-SH gene junction. In mice, the rMuV-preS-6P vaccine was more immunogenic than the rMuV-preS-2P vaccine, eliciting stronger neutralizing antibodies and mucosal immunity. Sera raised in response to the rMuV-preS-6P vaccine neutralized SARS-CoV-2 variants of concern, including the Delta variant equivalently. Intranasal and/or subcutaneous immunization of IFNAR1-/- mice and golden Syrian hamsters with the rMuV-preS-6P vaccine induced high levels of neutralizing antibodies, mucosal immunoglobulin A antibody, and T cell immune responses, and were completely protected from challenge by both SARS-CoV-2 USA-WA1/2020 and Delta variants. Therefore, rMuV-preS-6P is a highly promising COVID-19 vaccine candidate, warranting further development as a tetravalent MMR vaccine, which may include protection against SARS-CoV-2.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacina contra Sarampo-Caxumba-Rubéola , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Eficácia de Vacinas , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Imunogenicidade da Vacina , Vacina contra Sarampo-Caxumba-Rubéola/genética , Vacina contra Sarampo-Caxumba-Rubéola/imunologia , Mesocricetus , Camundongos , Vírus da Caxumba/genética , Vírus da Caxumba/imunologia , Prolina/genética , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
8.
Proc Natl Acad Sci U S A ; 119(21): e2202012119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35588457

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS­CoV-2) is a worldwide health concern, and new treatment strategies are needed. Targeting inflammatory innate immunity pathways holds therapeutic promise, but effective molecular targets remain elusive. Here, we show that human caspase-4 (CASP4) and its mouse homolog, caspase-11 (CASP11), are up-regulated in SARS­CoV-2 infections and that CASP4 expression correlates with severity of SARS­CoV-2 infection in humans. SARS­CoV-2­infected Casp11−/− mice were protected from severe weight loss and lung pathology, including blood vessel damage, compared to wild-type (WT) mice and mice lacking the caspase downstream effector gasdermin-D (Gsdmd−/−). Notably, viral titers were similar regardless of CASP11 knockout. Global transcriptomics of SARS­CoV-2­infected WT, Casp11−/−, and Gsdmd−/− lungs identified restrained expression of inflammatory molecules and altered neutrophil gene signatures in Casp11−/− mice. We confirmed that protein levels of inflammatory mediators interleukin (IL)-1ß, IL-6, and CXCL1, as well as neutrophil functions, were reduced in Casp11−/− lungs. Additionally, Casp11−/− lungs accumulated less von Willebrand factor, a marker for endothelial damage, but expressed more Kruppel-Like Factor 2, a transcription factor that maintains vascular integrity. Overall, our results demonstrate that CASP4/11 promotes detrimental SARS­CoV-2­induced inflammation and coagulopathy, largely independently of GSDMD, identifying CASP4/11 as a promising drug target for treatment and prevention of severe COVID-19.


Assuntos
COVID-19 , Caspases Iniciadoras/metabolismo , SARS-CoV-2 , Tromboinflamação , Animais , COVID-19/enzimologia , COVID-19/patologia , Caspases Iniciadoras/genética , Progressão da Doença , Humanos , Pulmão/patologia , Camundongos , Camundongos Knockout , Índice de Gravidade de Doença , Tromboinflamação/enzimologia , Tromboinflamação/genética
9.
J Virol ; 96(7): e0005722, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35319225

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused over 5 million deaths worldwide. Pneumonia and systemic inflammation contribute to its high mortality. Many viruses use heparan sulfate proteoglycans as coreceptors for viral entry, and heparanase (HPSE) is a known regulator of both viral entry and inflammatory cytokines. We evaluated the heparanase inhibitor Roneparstat, a modified heparin with minimum anticoagulant activity, in pathophysiology and therapy for COVID-19. We found that Roneparstat significantly decreased the infectivity of SARS-CoV-2, SARS-CoV-1, and retroviruses (human T-lymphotropic virus 1 [HTLV-1] and HIV-1) in vitro. Single-cell RNA sequencing (scRNA-seq) analysis of cells from the bronchoalveolar lavage fluid of COVID-19 patients revealed a marked increase in HPSE gene expression in CD68+ macrophages compared to healthy controls. Elevated levels of HPSE expression in macrophages correlated with the severity of COVID-19 and the expression of inflammatory cytokine genes, including IL6, TNF, IL1B, and CCL2. In line with this finding, we found a marked induction of HPSE and numerous inflammatory cytokines in human macrophages challenged with SARS-CoV-2 S1 protein. Treatment with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-mediated inflammatory cytokine release from human macrophages, through disruption of NF-κB signaling. HPSE knockdown in a macrophage cell line also showed diminished inflammatory cytokine production during S1 protein challenge. Taken together, this study provides a proof of concept that heparanase is a target for SARS-CoV-2-mediated pathogenesis and that Roneparstat may serve as a dual-targeted therapy to reduce viral infection and inflammation in COVID-19. IMPORTANCE The complex pathogenesis of COVID-19 consists of two major pathological phases: an initial infection phase elicited by SARS-CoV-2 entry and replication and an inflammation phase that could lead to tissue damage, which can evolve into acute respiratory failure or even death. While the development and deployment of vaccines are ongoing, effective therapy for COVID-19 is still urgently needed. In this study, we explored HPSE blockade with Roneparstat, a phase I clinically tested HPSE inhibitor, in the context of COVID-19 pathogenesis. Treatment with Roneparstat showed wide-spectrum anti-infection activities against SARS-CoV-2, HTLV-1, and HIV-1 in vitro. In addition, HPSE blockade with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-induced inflammatory cytokine release from human macrophages through disruption of NF-κB signaling. Together, this study provides a proof of principle for the use of Roneparstat as a dual-targeting therapy for COVID-19 to decrease viral infection and dampen the proinflammatory immune response mediated by macrophages.


Assuntos
Tratamento Farmacológico da COVID-19 , Heparina/análogos & derivados , Linhagem Celular , Citocinas/metabolismo , Fenofibrato , Técnicas de Silenciamento de Genes , Glucuronidase/genética , Glucuronidase/metabolismo , Heparina/uso terapêutico , Humanos , Imunidade/efeitos dos fármacos , Inflamação , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , NF-kappa B , SARS-CoV-2
10.
PLoS Pathog ; 17(12): e1010142, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34929018

RESUMO

Human respiratory syncytial virus (RSV) is the leading cause of respiratory tract infections in humans. A well-known challenge in the development of a live attenuated RSV vaccine is that interferon (IFN)-mediated antiviral responses are strongly suppressed by RSV nonstructural proteins which, in turn, dampens the subsequent adaptive immune responses. Here, we discovered a novel strategy to enhance innate and adaptive immunity to RSV infection. Specifically, we found that recombinant RSVs deficient in viral RNA N6-methyladenosine (m6A) and RSV grown in m6A methyltransferase (METTL3)-knockdown cells induce higher expression of RIG-I, bind more efficiently to RIG-I, and enhance RIG-I ubiquitination and IRF3 phosphorylation compared to wild-type virion RNA, leading to enhanced type I IFN production. Importantly, these m6A-deficient RSV mutants also induce a stronger IFN response in vivo, are significantly attenuated, induce higher neutralizing antibody and T cell immune responses in mice and provide complete protection against RSV challenge in cotton rats. Collectively, our results demonstrate that inhibition of RSV RNA m6A methylation enhances innate immune responses which in turn promote adaptive immunity.


Assuntos
Adenosina/análogos & derivados , RNA Viral , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Imunidade Adaptativa , Animais , Imunidade Inata , Metilação , Camundongos , Ratos
11.
J Virol ; 95(20): e0059221, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34379509

RESUMO

The current pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to dramatic economic and health burdens. Although the worldwide SARS-CoV-2 vaccination campaign has begun, exploration of other vaccine candidates is needed due to uncertainties with the current approved vaccines, such as durability of protection, cross-protection against variant strains, and costs of long-term production and storage. In this study, we developed a methyltransferase-defective recombinant vesicular stomatitis virus (mtdVSV)-based SARS-CoV-2 vaccine candidate. We generated mtdVSVs expressing SARS-CoV-2 full-length spike (S) protein, S1, or its receptor-binding domain (RBD). All of these recombinant viruses grew to high titers in mammalian cells despite high attenuation in cell culture. The SARS-CoV-2 S protein and its truncations were highly expressed by the mtdVSV vector. These mtdVSV-based vaccine candidates were completely attenuated in both immunocompetent and immunocompromised mice. Among these constructs, mtdVSV-S induced high levels of SARS-CoV-2-specific neutralizing antibodies (NAbs) and Th1-biased T-cell immune responses in mice. In Syrian golden hamsters, the serum levels of SARS-CoV-2-specific NAbs triggered by mtdVSV-S were higher than the levels of NAbs in convalescent plasma from recovered COVID-19 patients. In addition, hamsters immunized with mtdVSV-S were completely protected against SARS-CoV-2 replication in lung and nasal turbinate tissues, cytokine storm, and lung pathology. Collectively, our data demonstrate that mtdVSV expressing SARS-CoV-2 S protein is a safe and highly efficacious vaccine candidate against SARS-CoV-2 infection. IMPORTANCE Viral mRNA cap methyltransferase (MTase) is essential for mRNA stability, protein translation, and innate immune evasion. Thus, viral mRNA cap MTase activity is an excellent target for development of live attenuated or live vectored vaccine candidates. Here, we developed a panel of MTase-defective recombinant vesicular stomatitis virus (mtdVSV)-based SARS-CoV-2 vaccine candidates expressing full-length S, S1, or several versions of the RBD. These mtdVSV-based vaccine candidates grew to high titers in cell culture and were completely attenuated in both immunocompetent and immunocompromised mice. Among these vaccine candidates, mtdVSV-S induces high levels of SARS-CoV-2-specific neutralizing antibodies (Nabs) and Th1-biased immune responses in mice. Syrian golden hamsters immunized with mtdVSV-S triggered SARS-CoV-2-specific NAbs at higher levels than those in convalescent plasma from recovered COVID-19 patients. Furthermore, hamsters immunized with mtdVSV-S were completely protected against SARS-CoV-2 challenge. Thus, mtdVSV is a safe and highly effective vector to deliver SARS-CoV-2 vaccine.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Vírus da Estomatite Vesicular Indiana/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Encéfalo/virologia , COVID-19/imunologia , Linhagem Celular , Síndrome da Liberação de Citocina/prevenção & controle , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Humanos , Imunogenicidade da Vacina , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Mesocricetus , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Th1/imunologia , Vacinas Sintéticas/imunologia , Vírus da Estomatite Vesicular Indiana/enzimologia , Vírus da Estomatite Vesicular Indiana/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
12.
PLoS Biol ; 19(7): e3001292, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34324489

RESUMO

Among over 150 distinct RNA modifications, N6-methyladenosine (m6A) and adenosine-to-inosine (A-to-I) RNA editing represent 2 of the most studied modifications on mammalian mRNAs. Although both modifications occur on adenosine residues, knowledge on potential functional crosstalk between these 2 modifications is still limited. Here, we show that the m6A modification promotes expression levels of the ADAR1, which encodes an A-to-I RNA editing enzyme, in response to interferon (IFN) stimulation. We reveal that YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) mediates up-regulation of ADAR1; YTHDF1 is a reader protein that can preferentially bind m6A-modified transcripts and promote translation. Knockdown of YTHDF1 reduces the overall levels of IFN-induced A-to-I RNA editing, which consequently activates dsRNA-sensing pathway and increases expression of various IFN-stimulated genes. Physiologically, YTHDF1 deficiency inhibits virus replication in cells through regulating IFN responses. The A-to-I RNA editing activity of ADAR1 plays important roles in the YTHDF1-dependent IFN responses. Therefore, we uncover that m6A and YTHDF1 affect innate immune responses through modulating the ADAR1-mediated A-to-I RNA editing.

13.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33688034

RESUMO

The current pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights an urgent need to develop a safe, efficacious, and durable vaccine. Using a measles virus (rMeV) vaccine strain as the backbone, we developed a series of recombinant attenuated vaccine candidates expressing various forms of the SARS-CoV-2 spike (S) protein and its receptor binding domain (RBD) and evaluated their efficacy in cotton rat, IFNAR-/-mice, IFNAR-/--hCD46 mice, and golden Syrian hamsters. We found that rMeV expressing stabilized prefusion S protein (rMeV-preS) was more potent in inducing SARS-CoV-2-specific neutralizing antibodies than rMeV expressing full-length S protein (rMeV-S), while the rMeVs expressing different lengths of RBD (rMeV-RBD) were the least potent. Animals immunized with rMeV-preS produced higher levels of neutralizing antibody than found in convalescent sera from COVID-19 patients and a strong Th1-biased T cell response. The rMeV-preS also provided complete protection of hamsters from challenge with SARS-CoV-2, preventing replication in lungs and nasal turbinates, body weight loss, cytokine storm, and lung pathology. These data demonstrate that rMeV-preS is a safe and highly efficacious vaccine candidate, supporting its further development as a SARS-CoV-2 vaccine.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Vetores Genéticos , Vírus do Sarampo , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Sintéticas/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/complicações , COVID-19/patologia , Vacinas contra COVID-19/genética , Cricetinae , Modelos Animais de Doenças , Expressão Gênica , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Humanos , Imunização , Imunogenicidade da Vacina , Vírus do Sarampo/genética , Vírus do Sarampo/imunologia , Camundongos , Camundongos Transgênicos , Ratos , Glicoproteína da Espícula de Coronavírus/genética , Vacinas Sintéticas/genética
14.
J Virol ; 95(9)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33536170

RESUMO

N6-Methyladenosine (m6A) is the most abundant internal RNA modification catalyzed by host RNA methyltransferases. As obligate intracellular parasites, many viruses acquire m6A methylation in their RNAs. However, the biological functions of viral m6A methylation are poorly understood. Here, we found that viral m6A methylation serves as a molecular marker for host innate immunity to discriminate self from nonself RNA and that this novel biological function of viral m6A methylation is universally conserved in several families in nonsegmented negative-sense (NNS) RNA viruses. Using m6A methyltransferase (METTL3) knockout cells, we produced m6A-deficient virion RNAs from the representative members of the families Pneumoviridae, Paramyxoviridae, and Rhabdoviridae and found that these m6A-deficient viral RNAs triggered significantly higher levels of type I interferon compared to the m6A-sufficient viral RNAs, in a RIG-I-dependent manner. Reconstitution of the RIG-I pathway revealed that m6A-deficient virion RNA induced higher expression of RIG-I, bound to RIG-I more efficiently, enhanced RIG-I ubiquitination, and facilitated RIG-I conformational rearrangement and oligomerization. Furthermore, the m6A binding protein YTHDF2 is essential for suppression of the type I interferon signaling pathway, including by virion RNA. Collectively, our results suggest that several families in NNS RNA viruses acquire m6A in viral RNA as a common strategy to evade host innate immunity.IMPORTANCE The nonsegmented negative-sense (NNS) RNA viruses share many common replication and gene expression strategies. There are no vaccines or antiviral drugs for many of these viruses. We found that representative members of the families Pneumoviridae, Paramyxoviridae, and Rhabdoviridae among the NNS RNA viruses acquire m6A methylation in their genome and antigenome as a means to escape recognition by host innate immunity via a RIG-I-dependent signaling pathway. Viral RNA lacking m6A methylation induces a significantly higher type I interferon response than m6A-sufficient viral RNA. In addition to uncovering m6A methylation as a common mechanism for many NNS RNA viruses to evade host innate immunity, this study discovered a novel strategy to enhance type I interferon responses, which may have important applications in vaccine development, as robust innate immunity will likely promote the subsequent adaptive immunity.


Assuntos
Adenosina/análogos & derivados , Interações entre Hospedeiro e Microrganismos/imunologia , Interferon Tipo I/imunologia , Vírus de RNA de Sentido Negativo , Infecções por Vírus de RNA , RNA Viral/genética , Células A549 , Adenosina/genética , Regulação Viral da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Imunidade Inata , Metiltransferases/genética , Vírus de RNA de Sentido Negativo/genética , Vírus de RNA de Sentido Negativo/imunologia , Vírus de RNA de Sentido Negativo/patogenicidade , Processamento Pós-Transcricional do RNA , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia
15.
bioRxiv ; 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34981061

RESUMO

Interferon-induced transmembrane protein 3 (IFITM3) is a host antiviral protein that alters cell membranes to block fusion of viruses. Published reports have identified conflicting pro- and antiviral effects of IFITM3 on SARS-CoV-2 in cultured cells, and its impact on viral pathogenesis in vivo remains unclear. Here, we show that IFITM3 knockout (KO) mice infected with mouse-adapted SARS-CoV-2 experienced extreme weight loss and lethality, while wild type (WT) mice lost minimal weight and recovered. KO mice had higher lung viral titers and increases in lung inflammatory cytokine levels, CD45-positive immune cell infiltration, and histopathology, compared to WT mice. Mechanistically, we observed disseminated viral antigen staining throughout the lung tissue and pulmonary vasculature in KO mice, while staining was observed in confined regions in WT lungs. Global transcriptomic analysis of infected lungs identified upregulation of gene signatures associated with interferons, inflammation, and angiogenesis in KO versus WT animals, highlighting changes in lung gene expression programs that precede severe lung pathology and fatality. Corroborating the protective effect of IFITM3 in vivo , K18-hACE2/IFITM3 KO mice infected with non-adapted SARS-CoV-2 showed enhanced, rapid weight loss and early death compared to control mice. Increased heart infection was observed in both mouse models in the absence of IFITM3, indicating that IFITM3 constrains extrapulmonary dissemination of SARS-CoV-2. Our results establish IFITM3 KO mice as a new animal model for studying severe SARS-CoV-2 infection of the lung and cardiovascular system, and overall demonstrate that IFITM3 is protective in SARS-CoV-2 infections of mice.

16.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32999025

RESUMO

Human respiratory syncytial virus (RSV) is the leading viral cause of lower respiratory tract disease in infants and children worldwide. Currently, there are no FDA-approved vaccines to combat this virus. The large (L) polymerase protein of RSV replicates the viral genome and transcribes viral mRNAs. The L protein is organized as a core ring-like domain containing the RNA-dependent RNA polymerase and an appendage of globular domains containing an mRNA capping region and a cap methyltransferase region, which are linked by a flexible hinge region. Here, we found that the flexible hinge region of RSV L protein is tolerant to amino acid deletion or insertion. Recombinant RSVs carrying a single or double deletion or a single alanine insertion were genetically stable, highly attenuated in immortalized cells, had defects in replication and spread, and had a delay in innate immune cytokine responses in primary, well-differentiated, human bronchial epithelial (HBE) cultures. The replication of these recombinant viruses was highly attenuated in the upper and lower respiratory tracts of cotton rats. Importantly, these recombinant viruses elicited high levels of neutralizing antibody and provided complete protection against RSV replication. Taken together, amino acid deletions or insertions in the hinge region of the L protein can serve as a novel approach to rationally design genetically stable, highly attenuated, and immunogenic live virus vaccine candidates for RSV.IMPORTANCE Despite tremendous efforts, there are no FDA-approved vaccines for human respiratory syncytial virus (RSV). A live attenuated RSV vaccine is one of the most promising vaccine strategies for RSV. However, it has been a challenge to identify an RSV vaccine strain that has an optimal balance between attenuation and immunogenicity. In this study, we generated a panel of recombinant RSVs carrying a single and double deletion or a single alanine insertion in the large (L) polymerase protein that are genetically stable, sufficiently attenuated, and grow to high titer in cultured cells, while retaining high immunogenicity. Thus, these recombinant viruses may be promising vaccine candidates for RSV.


Assuntos
Metiltransferases/genética , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/imunologia , Vacinas Atenuadas/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Células A549 , Aminoácidos , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Chlorocebus aethiops , Citocinas/metabolismo , Humanos , Pulmão/patologia , Pulmão/virologia , Metiltransferases/química , Modelos Moleculares , RNA Mensageiro , RNA Polimerase Dependente de RNA , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/patologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Sigmodontinae , Células Vero , Proteínas Virais/química , Replicação Viral
17.
J Virol ; 94(17)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32554698

RESUMO

The nonstructural protein 1 (NS1) of several flaviviruses, including West Nile, dengue, and yellow fever viruses, is capable of inducing variable degrees of protection against flavivirus infection in animal models. However, the immunogenicity of NS1 protein of Zika virus (ZIKV) is less understood. Here, we determined the efficacy of ZIKV NS1-based vaccine candidates using two delivery platforms, methyltransferase-defective recombinant vesicular stomatitis virus (mtdVSV) and a DNA vaccine. We first show that expression of ZIKV NS1 could be significantly enhanced by optimizing the signal peptide. A single dose of mtdVSV-NS1-based vaccine or two doses of DNA vaccine induced high levels of NS1-specfic antibody and T cell immune responses but provided only partial protection against ZIKV viremia in BALB/c mice. In Ifnar1-/- mice, neither NS1-based vaccine provided protection against a lethal high dose (105 PFU) ZIKV challenge, but mtdVSV-NS1-based vaccine prevented deaths from a low dose (103 PFU) challenge, though they experienced viremia and body weight loss. We conclude that ZIKV NS1 alone conferred substantial, but not complete, protection against ZIKV infection. Nevertheless, these results highlight the value of ZIKV NS1 for vaccine development.IMPORTANCE Most Zika virus (ZIKV) vaccine research has focused on the E or prM-E proteins and the induction of high levels of neutralizing antibodies. However, these ZIKV neutralizing antibodies cross-react with other flaviviruses, which may aggravate the disease via an antibody-dependent enhancement (ADE) mechanism. ZIKV NS1 protein may be an alternative antigen for vaccine development, since antibodies to NS1 do not bind to the virion, thereby eliminating the risk of ADE. Here, we show that recombinant VSV and DNA vaccines expressing NS1, alone, confer partial protection against ZIKV infection in both immunocompetent and immunodeficient mice, highlighting the value of NS1 as a potential vaccine candidate.


Assuntos
Vacinas de DNA/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Reações Cruzadas , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptor de Interferon alfa e beta/genética , Vacinas de DNA/genética , Estomatite Vesicular/prevenção & controle , Proteínas não Estruturais Virais/genética , Infecção por Zika virus/virologia
18.
J Virol ; 94(16)2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32461321

RESUMO

The 5' cap methylation of viral RNA plays important roles in RNA stability, efficient translation, and immune evasion. Thus, RNA cap methylation is an attractive target for antiviral discovery and development of new live attenuated vaccines. For coronaviruses, RNA cap structure is first methylated at the guanine-N-7 (G-N-7) position by nonstructural protein 14 (nsp14), which facilitates and precedes the subsequent ribose 2'-O methylation by the nsp16-nsp10 complex. Using porcine epidemic diarrhea virus (PEDV), an Alphacoronavirus, as a model, we showed that G-N-7 methyltransferase (G-N-7 MTase) of PEDV nsp14 methylated RNA substrates in a sequence-unspecific manner. PEDV nsp14 can efficiently methylate RNA substrates with various lengths in both neutral and alkaline pH environments and can methylate cap analogs (GpppA and GpppG) and single-nucleotide GTP but not ATP, CTP, or UTP. Mutations to the S-adenosyl-l-methionine (SAM) binding motif in the nsp14 abolished the G-N-7 MTase activity and were lethal to PEDV. However, recombinant rPEDV-D350A with a single mutation (D350A) in nsp14, which retained 29.0% of G-N-7 MTase activity, was viable. Recombinant rPEDV-D350A formed a significantly smaller plaque and had significant defects in viral protein synthesis and viral replication in Vero CCL-81 cells and intestinal porcine epithelial cells (IPEC-DQ). Notably, rPEDV-D350A induced significantly higher expression of both type I and III interferons in IPEC-DQ cells than the parental rPEDV. Collectively, our results demonstrate that G-N-7 MTase activity of PEDV modulates viral replication, gene expression, and innate immune responses.IMPORTANCE Coronaviruses (CoVs) include a wide range of important human and animal pathogens. Examples of human CoVs include severe acute respiratory syndrome coronavirus (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), and the most recently emerged SARS-CoV-2. Examples of pig CoVs include porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine enteric alphacoronavirus (SeACoV). There are no vaccines or antiviral drugs for most of these viruses. All known CoVs encode a bifunctional nsp14 protein which possesses ExoN and guanine-N-7 methyltransferase (G-N-7 MTase) activities, responsible for replication fidelity and RNA cap G-N-7 methylation, respectively. Here, we biochemically characterized G-N-7 MTase of PEDV nsp14 and found that G-N-7 MTase-deficient PEDV was defective in replication and induced greater responses of type I and III interferons. These findings highlight that CoV G-N-7 MTase may be a novel target for rational design of live attenuated vaccines and antiviral drugs.


Assuntos
Exorribonucleases/metabolismo , Interferon Tipo I/biossíntese , Interferons/biossíntese , Vírus da Diarreia Epidêmica Suína/fisiologia , Capuzes de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Chlorocebus aethiops , Exorribonucleases/genética , Expressão Gênica , Guanina/metabolismo , Imunidade Inata , Metilação , Mutação , Vírus da Diarreia Epidêmica Suína/enzimologia , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/patogenicidade , RNA Viral/metabolismo , S-Adenosilmetionina/metabolismo , Suínos , Células Vero , Proteínas não Estruturais Virais/genética , Replicação Viral , Interferon lambda
19.
Nat Microbiol ; 5(4): 584-598, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32015498

RESUMO

Internal N6-methyladenosine (m6A) modification is one of the most common and abundant modifications of RNA. However, the biological roles of viral RNA m6A remain elusive. Here, using human metapneumovirus (HMPV) as a model, we demonstrate that m6A serves as a molecular marker for innate immune discrimination of self from non-self RNAs. We show that HMPV RNAs are m6A methylated and that viral m6A methylation promotes HMPV replication and gene expression. Inactivating m6A addition sites with synonymous mutations or demethylase resulted in m6A-deficient recombinant HMPVs and virion RNAs that induced increased expression of type I interferon, which was dependent on the cytoplasmic RNA sensor RIG-I, and not on melanoma differentiation-associated protein 5 (MDA5). Mechanistically, m6A-deficient virion RNA induces higher expression of RIG-I, binds more efficiently to RIG-I and facilitates the conformational change of RIG-I, leading to enhanced interferon expression. Furthermore, m6A-deficient recombinant HMPVs triggered increased interferon in vivo and were attenuated in cotton rats but retained high immunogenicity. Collectively, our results highlight that (1) viruses acquire m6A in their RNA as a means of mimicking cellular RNA to avoid detection by innate immunity and (2) viral RNA m6A can serve as a target to attenuate HMPV for vaccine purposes.


Assuntos
Adenosina/análogos & derivados , Proteína DEAD-box 58/genética , Evasão da Resposta Imune/genética , Interferon beta/genética , Metapneumovirus/imunologia , RNA Viral/genética , Células A549 , Adenosina/imunologia , Adenosina/metabolismo , Animais , Chlorocebus aethiops , Proteína DEAD-box 58/imunologia , Regulação da Expressão Gênica , Genoma Viral/imunologia , Células HeLa , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/imunologia , Interferon beta/imunologia , Metapneumovirus/genética , Metapneumovirus/crescimento & desenvolvimento , NF-kappa B/genética , NF-kappa B/imunologia , Infecções por Paramyxoviridae/genética , Infecções por Paramyxoviridae/imunologia , Infecções por Paramyxoviridae/virologia , RNA Viral/imunologia , Receptores Imunológicos , Sigmodontinae , Transdução de Sinais , Células THP-1 , Células Vero , Vírion/genética , Vírion/crescimento & desenvolvimento , Vírion/imunologia
20.
Nat Commun ; 10(1): 4595, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31597913

RESUMO

N6-methyladenosine (m6A) is the most prevalent internal modification of mRNAs in most eukaryotes. Here we show that RNAs of human respiratory syncytial virus (RSV) are modified by m6A within discreet regions and that these modifications enhance viral replication and pathogenesis. Knockdown of m6A methyltransferases decreases RSV replication and gene expression whereas knockdown of m6A demethylases has the opposite effect. The G gene transcript contains the most m6A modifications. Recombinant RSV variants expressing G transcripts that lack particular clusters of m6A display reduced replication in A549 cells, primary well differentiated human airway epithelial cultures, and respiratory tracts of cotton rats. One of the m6A-deficient variants is highly attenuated yet retains high immunogenicity in cotton rats. Collectively, our results demonstrate that viral m6A methylation upregulates RSV replication and pathogenesis and identify viral m6A methylation as a target for rational design of live attenuated vaccine candidates for RSV and perhaps other pneumoviruses.


Assuntos
Adenosina/análogos & derivados , Infecções por Vírus Respiratório Sincicial/imunologia , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Replicação Viral/imunologia , Células A549 , Adenosina/genética , Adenosina/imunologia , Adenosina/metabolismo , Animais , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Feminino , Células HeLa , Humanos , Masculino , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/patogenicidade , Sigmodontinae , Regulação para Cima/imunologia , Vacinas Atenuadas/imunologia , Células Vero , Virulência/genética , Virulência/imunologia , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...